

A numerical investigation on the response of thick ultra-high molecular weight polyethylene composite to ballistic impact

Long H. Nguyen^{1,2}, <u>Shannon Ryan¹</u>, Adrian Orifici²

¹ Defence Science and Technology Group

² RMIT University

29th International Symposium on Ballistics

Numerical Modelling Approach

- Aim: model thick targets
 - Continuum model (100 mm thick panel has ~1600 plies)
- Non-linear orthotropic continuum model
 - Non-linear EoS
 - Non-linear orthotropic strength model
 - Interactive orthotropic failure

Accounting for Severe Strength Anisotropy

Modified Hashin failure:

$$\left(\frac{\sigma_{ii}}{S_{ii}(1-D_{ii})}\right)^{2} + \left(\frac{\sigma_{jj}}{S_{jj}(1-D_{jj})}\right)^{2} + \left(\frac{\sigma_{kk}}{S_{kk}(1-D_{kk})}\right)^{2} \ge 1 \quad for \ i,j,k = 1,2,3$$

- Failure in one direction initiates softening in others
- Sub-laminate discretization implemented

Bond failure:

$$\left(\frac{\sigma_N}{S_N}\right)^a + \left(\frac{\sigma_S}{S_S}\right)^b \ge 1$$

Constitutive Model Parameters

- Mix of quasi-static and dynamic testing
 - Performed in collaboration with Fraunhofer EMI & DSM

Quasi-static in-plane tension

Dynamic out-of-plane shear

Quasi-static out-of-plane tension

Qualitative Assessment

The model is able to capture key characteristics of UHMW-PE composite under ballistic impact

Quantitative Assessment – Finite Target V₅₀

Numerical predictions are within 20% of experimental V_{50}

Science and Technology for Safeguarding Australia

Quantitative Assessment – Semi-infinite DoP

Numerical predictions are within 5% of experimental DoP

Quantitative Assessment – Bulge Formation

Exploitation of the Numerical Model

Model validated for penetrator class (i.e. FSP)

- Can now be exploited to:
 - Better understand failure mechanisms
 - Investigate the influence of changing properties
 - Aid in designing the next generation of materials
 - Reduce experimental burden
 - Optimize design in multi-material armour configurations

Penetration Resistance

- Two stages of penetration
 - Localised: low energy absorption
 - Bulging: high energy absorption

Penetration Resistance (cont.)

- Two stages of penetration
 - Localised: High pressure, low momentum transfer
 - Bulging: low pressure, high momentum transfer

Transition of Penetration Mechanisms

Transition

- Transition to bulging is driven by:
 - Impact velocity
 - Shock and release properties of the material

Influence of Impact Conditions

- ↑Impact velocity
- ↓Proportion under bulging

- ↑Target thickness
- 个 Proportion under bulging

Delamination

- Impact shock induced delamination
- Allows material to deform, absorbing more energy
- Increased interlaminar strength → decrease performance

Conclusion

- Thick laminates of UHMW-PE composite exhibit two-stage penetration under ballistic impact
- Bulging is significantly more effective than local penetration
- Transition to bulging is influenced by the stress wave properties of the material and the projectile penetration rate
- Delamination occurs ahead of the projectile and is important in allowing the target to exhibit extensive bulging – driven by the pressure wave